Расчет скорости испарения. Расчет скорости испарения Задание к работе

В современном производстве довольно часто эксплуатируются аппараты с открытой поверхностью испарения, к ним относятся ванны для окраски окунанием, ванны для пропитки тканей, бумаги смолами, ванны для промывки и обезжиривания деталей растворителями, открытая поверхность испарения в случае аварийного разлива ЛВЖ, ГЖ.

Эти аппараты являются наиболее опасными, т.к. даже при их нормальной работе возможно поступление большого количества паров горючих веществ в воздушное пространство производственного помещения.

Горючая концентрация смеси паров с воздухом над поверхностью такого аппарата образуется, если температура жидкости Т выше температуры вспышки ее паров:

Т≥Т всп

Для практического использования этого условия численное значение Т определяют по проекту или технологическому регламенту, Т всп определяется по справочнику.

Количество жидкости, испаряющей со свободной поверхности, зависит от физических свойств этой жидкости, температурных условий, площади и времени испарения, а также подвижности воздуха.

Различают испарение в неподвижную и движущуюся среду.

Движущей силой процесса в случае испарения в неподвижную среду будет являться молекулярная диффузия.

При испарении паров в неподвижную среду рассеивание их в производственное помещение затруднено. Практический интерес представляет закон изменения концентрации пара по высоте над поверхностью испаряющейся жидкости, возможные размеры зоны взрывоопасности, количество испаряющейся жидкости.

Основной закон статического испарения, открытый Дальтоном, гласит, что количество паров испаряемой жидкости в единицу времени пропорционально площади зеркала испарения, коэффициенту диффузии D и разности давления насыщенного пара Р s жидкости при данной температуре и давления паров в воздухе Р g .

Отношение давления паров жидкости в воздухе в данный момент к максимальному давлению насыщенных паров при данной температуре называется степенью насыщения φ , т.е.

φ= Р g / Р s или Р g = φ Р s

При решении практических задач обычно определяют скорость испарения, а затем количество испарившейся жидкости.

Для практических расчётов важно знать и величину средней концентрации горючих паров в паровоздушной зоне.

Под скоростью испарения понимают объем паров жидкости V , испаряющейся со свободной поверхности в 1 секунду.

Скорость испарения зависит от формы сосуда, в котором находится жидкость и от высоты взлива жидкости.

Испарение в подвижную среду будет определяться законами массообмена .

Для расчета количества испарившихся паров в подвижную среду на практике используют эмпирические зависимости.

Интенсивность испарения в движущуюся среду определяют по зависимости:

где: -интенсивность испарения в движущуюся среду, кг с -1 ;

- скорость движения воздуха над поверхностью испаре­ния, м с -1 ;

- давление насыщенного пара при расчетной температуре жидкости, Па;

- молярная масса, кг кмоль -1 ;

- площадь испарения, м 2 .

Отдел образования, молодежной политики, физической культуры и спорта

администрации Моргаушского района

Муниципальное образовательное учреждение

«Кашмашская основная общеобразовательная школа»

Исследовательская работа

Тема : «Испарение»

МОУ «Кашмашская ООШ»

Зайцевой Виктории

Руководитель:

д. Кашмаши - 2010

Введение

Основная часть:

Заключение

Приложение

Литература

Введение

Актуальность темы:

В природе вода постоянно испаряется с поверхности морей, рек, озёр, почвы. Она в виде пара поднимается высоко вверх. Пар охлаждается там и образует множество водяных капелек или крошечных льдинок. Из этих капелек и льдинок образуются облака. Из облака вода возвращается на землю в виде дождя и снега.

Проблема темы:

Почему мокрое бельё сохнет, вода, налитая на пол, исчезает?

Объект темы:

Процесс испарения веществ

Предмет темы:

Жидкости и пары

Цель работы: исследование процесса испарения в бытовых условиях.

Задачи работы:

1. Изучить литературу по теме работы;

2. Опытным путем доказать, как происходит процесс испарения;

3. Выявить причины, влияющие на процессы испарения.

Методы:

Изучение литературы;

Наблюдение;

Глава I Испарение

Испарение – это процесс, при котором жидкость постепенно переходит в воздух в форме пара или газа.

Все жидкости испаряются, но с разной скоростью.

Когда жидкость подогрета, испарение происходит быстрее – в теплой жидкости скорость движения молекул больше, больше молекул имеет шанс покинуть жидкость.


Чем больше поверхность испаряющейся жидкости, тем быстрее происходит испарение. Вода в круглой сковородке испариться быстрее, чем в высоком кувшине.

Смочив руку какой-нибудь быстро испаряющейся жидкостью (спирт, духи), можно почувствовать сильное охлаждение смоченного места. Охлаждение усилиться если на руку подуть.

Круговорот воды в природе

В сильную жару реки, пруды и озера мелеют, вода испаряется, то есть из жидкого состояния переходит в газообразное -- превращается в невидимый пар. В течении дня, вода луж, прудов, озер, рек, морей, влага, содержащаяся в растениях нагревается Солнцем и испаряется, причем тем скорее, чем сильнее нагрета. Можно заметить это, если две одинаковые тарелки наполнить разным количеством воды и одну из них выставить на солнцепек, а другую поместить в тень. Там где вода нагревается солнечными лучами, она будет испаряться заметно быстрее. Ускоряет испарение и ветер. Влажный лист бумаги на ветру высохнет быстрее, чем оставленный там, где воздух спокоен и неподвижен.

В жаркие сухие дни человек потеет, но пот мало его беспокоит: он мгновенно высыхает. А когда стоит влажная жара, то от пота намокает даже одежда. Но если влага постоянно испаряется из морей, рек, озер, если она уходит из растений и исчезает в атмосфере, то почему же тогда Земля не высыхает?

Это не случается потому, что вода совершает постоянный круговорот. Испарившись, она поднимается вместе с нагретым воздухом, принимая форму мельчайших капелек.

Вывод:

Процесс испарения – это очень интересное явление, его интересно наблюдать и отмечать, как оно часто встречается в нашей жизни.

Я думаю, что наука еще не раз использует процесс испарения для пользы человека и нашей планеты.

Глава II Практические опыты

Скорость испарения зависит от:

1) площади поверхности жидкости;

2) температуры;

3) движения молекул над поверхностью жидкости (ветер);

4) рода вещества;

1. Зависимость испарения от площади испаряемой поверхности, если температура жидкости одинакова.

Ход опыта:

Нальем одинаковое количество воды в стакан и блюдце. Оставим до утра.

На следующее утро мы видим, что вода в блюдце испарилась (объем жидкости стал меньше), а в стакане вода ещё есть.

Вывод: Чем больше поверхность испаряющийся жидкости, тем быстрее происходит испарение, так как количество испаряющихся молекул будет больше на большей площади.

2. Зависимость испарения от температуры

Ход опыта:

Я взяла 2 одинаковых сосуда, в один из которых налила холодную воду, а в другой – горячую. Уровень воды был одинаковый. Через некоторое время в сосуде, где была горячая вода, жидкости стало меньше.

Вывод : Чем выше температура, тем больше скорость испарения

3. Зависимость испарения от ветра.

Ход опыта:

Скорость испарения зависит от движения воздуха над свободной поверхностью жидкости. Когда мы создаем ветер, испарение происходит быстрее

На 2 листа бумаги нанесем одинаковое количество воды. Над одним листом будем создавать тетрадью или феном ветер.

Вывод: Если воздух над жидкостью движется, скорость испарения увеличивается, так как поток воздуха помогает молекулам жидкости оторваться от поверхности и перейти в парообразное состояние. Горячий воздух ускорит этот процесс.


Зависимость испарения от рода вещества.

Ход опыта:

Для проведения данного опыта я взяла две бумажные салфетки. На первую налила немножко воды, а на вторую брызнула духи. Затем я стала наблюдать за испарением жидкостей.

Быстрее всего испарились духи, не оставив следа на салфетке. Остался только приятный запах. Вторым испарилась вода.

Вывод: Я думаю, разные жидкости имеют разную скорость испарения.

5. Это интересно!

Ход опыта:

На тыльную сторону ладони нанесла тонкий слой духов. При испарении духов с руки почувствовала холод.

Вывод: Значит, для испарения жидкости необходим постоянный приток энергии от ладони.

6. Это интересно!

Ход опыта:

Одну половину доски я вытерла мокрой-мокрой тряпкой, а другую чуть-чуть мокрой тряпкой. Вторая половина доски у меня высохла, а первая всё ещё оставалась мокрой.

Вывод: Значит доску надо вытирать более сухой тряпкой

Выводы:

Работая над темой «Испарение», я нашла ответы на свои вопросы. Я узнала, почему мокрое бельё сохнет, вода, налитая на пол, исчезает.

Скорость испарения жидкости зависит от площади свободной поверхности жидкости. Чем больше площадь испарения, тем быстрее происходит испарение.

Скорость испарения зависит от температуры жидкости. Чем выше температура жидкости, тем быстрее происходит испарение.

Скорость испарения зависит от движения воздуха над свободной поверхностью жидкости.

Скорость испарения зависит от рода взятой жидкости.

Заключение

Работая над темой испарение, я нашла ответы на свои вопросы. Я узнала, как происходит испарение, что скорость испарения веществ различна. Люди активно используют процесс испарения в своей жизни, применяют его в производстве различных механизмов и машин, используют в быту. В природе этот процесс происходит вне зависимости от деятельности человека и задача людей – не нарушать этот процесс. Для этого необходимо любить природу и любить нашу Землю! Опыты, которые я провела, были очень интересными, и я думаю, что можно провести еще много других опытов по этой теме. Сейчас я всегда обращаю внимание на испарение, происходящее в природе или в жизни человека, и я рада, что уже так много знаю о нем!

Приложение 1

Процесс испарения в жизни человека.

    Испарение иногда бывает опасно. Например: если у вас разбился градусник, то из него может вылиться ртуть, которая быстро испаряется. Её пары очень опасны и ядовиты для человека. Бензин также опасен своими парами: розлив бензина и случайная искра может привести к мгновенному взрыву и пожару. На кухне хозяйка часто использует процесс испарения для приготовления и сохранения пищи. Например: образующийся внутри кастрюли-скороварки пар давит на воду, вследствие чего она закипает при более высокой температуре и пища готовиться быстрее.
    Процесс испарения часто используют при стерилизации посуды для консервирования продуктов.
    При простуде люди часто используют процесс испарения при проведении ингаляций лекарственными травами.
    Ощущать долго аромат духов люди могут только благодаря испарению, сначала с поверхности кожи испаряется спирт, а затем и менее летучие ароматические вещества, которые продолжают напоминать о человеке даже, когда он ушел.
    Процесс испарения с помощью горячей струи воздуха позволяет создавать красивые прически. Работа парикмахера без фена невозможна!

Процесс испарения в природе

    Реки растворяют в своих водах множество химических веществ, содержащихся в горных породах, и уносят их в море. Одно из таких веществ – обыкновенная соль, которую мы употребляем в пищу. Когда морская вода испаряется, растворенная в ней соль остается в море. Вот почему моря такие соленые.
    Когда водяные капельки в облаке встречаются с массой теплого воздуха, они испаряются – и облако исчезает! Поэтому облака постоянно меняют свою форму. Содержащаяся в них влага постоянно превращается то в воду, то в пар. Капли воды, содержащиеся в облаке, имеют вес, поэтому тяготение тянет их вниз, и они отпускаются все ниже и ниже. Когда основная их часть, падая, достигает более теплых воздушных слоев, этот теплый воздух заставляет их испаряться. Так получаются облака, из которых не льется дождь. Они испаряются, и капли не успевают достичь земной поверхности.

ПРИЛОЖЕНИЕ И

МЕТОД РАСЧЕТА ПАРАМЕТРОВ ИСПАРЕНИЯ ГОРЮЧИХ НЕНАГРЕТЫХ ЖИДКОСТЕЙ И СЖИЖЕННЫХ УГЛЕВОДОРОДНЫХ ГАЗОВ

И. 1 Интенсивность испарения W, кг/(с·м 2), определяют по справочным и экспериментальным данным. Для ненагретых выше температуры окружающей среды ЛВЖ, при отсутствии данных допускается рассчитывать W по формуле 1)

W = 10 -6 h p н , (И.1)

_______

1) Формула применима при температуре подстилающей поверхности от минус 50 до плюс 40 °С.

где h - коэффициент, принимаемый по таблице И.1 в зависимости от скорости и температуры воздушного потока над поверхностью испарения;

М - молярная масса, г/моль;

p н - давление насыщенного пара при расчетной температуре жидкости t р , определяемое по справочным данным, кПа.

Таблица И.1

Скорость воздушного потока в помещении,

Значение коэффициента h при температуре t, ° С, воздуха в помещении

м/с

10,0

И.2 Для сжиженных углеводородных газов (СУГ) при отсутствии данных допускается рассчитывать удельную массу паров испарившегося СУГ m СУГ , кг/м 2 , по формуле 1)

, (И.2 )

_______

1) Формула применима при температуре подстилающей поверхности от минус 50 до плюс 40 °С.

где М - молярная масса СУГ, кг/моль;

L исп - мольная теплота испарения СУГ при начальной температуре СУГ Т ж , Дж/моль;

Т 0 - начальная температура материала, на поверхность которого разливается СУГ, соответствующая расчетной температуре t p , К;

Т ж - начальная температура СУГ, К;

l тв - коэффициент теплопроводности материала, на поверхность которого разливается СУГ, Вт/(м · К);

а - эффективный коэффициент температуропроводности материала, на поверхность которого разливается СУГ, равный 8,4·10 -8 м 2 /с;

t - текущее время, с, принимаемое равным времени полного испарения СУГ, но не более 3600 с;

число Рейнольдса (n - скорость воздушного потока, м/с; d - характерный размер пролива СУГ, м;

u в - кинематическая вязкость воздуха при расчетной температуре t р , м 2 /с);

l в - коэффициент теплопроводности воздуха при расчетной температуре t р , Вт/(м · К).

Примеры - Расчет параметров испарения горючих ненагретых жидкостей и сжиженных углеводородных газов

1 Определить массу паров ацетона, поступающих в объем помещения в результате аварийной разгерметизации аппарата.

Данные для расчета

В помещении с площадью пола 50 м 2 установлен аппарат с ацетоном максимальным объемом V a п = 3 м 3 . Ацетон поступает в аппарат самотеком по трубопроводу диаметром d = 0,05 м с расходом q, равным 2 · 10 - 3 м 3 /с. Длина участка напорного трубопровода от емкости до ручной задвижки l 1 = 2 м. Длина участка отводящего трубопровода диаметром d = 0,05 м от емкости до ручной задвижки L 2 равна 1 м. Скорость воздушного потока и в помещении при работающей общеобменной вентиляции равна 0,2 м/с. Температура воздуха в помещении t р =20 ° С. Плотность r ацетона при данной температуре равна 792 кг/м 3 . Давление насыщенных паров ацетона р a при t р равно 24,54 кПа.

Расчет

Объем ацетона, вышедшего из напорного трубопровода, V н.т составляет

М 3 ,

где t - расчетное время отключения трубопровода, равное 300 с (при ручном отключении).

Объем ацетона, вышедшего из отводящего трубопровода V от составляет

Объем ацетона, поступившего в помещение

V a = V ап + V н.т + V от = 3 + 6,04 ·10 -1 + 1,96 · 10 -3 = 6,600 м 3 .

Исходя из того, что 1 л ацетона разливается на 1 м 2 площади пола, расчетная площадь испарения S р = 3600 м 2 ацетона превысит площадь пола помещения. Следовательно, за площадь испарения ацетона принимается площадь пола помещения, равная 50 м 2 .

Интенсивность испарения равна:

W исп = 10 -6 · 3,5 · 24,54 = 0,655 · 10 -3 кг/(с · м 2).

Масса паров ацетона, образующихся при аварийной разгерметизации аппарата т, кг, будет равна

т = 0,655 · 10 -3 · 50 · 3600 = 117,9 кг.

2 Определить массу газообразного этилена, образующегося при испарении пролива сжиженного этилена в условиях аварийной разгерметизации резервуара.

Данные для расчета

Изотермический резервуар сжиженного этилена объемом V и.р.э = 10000 м 3 установлен в бетонном обваловании свободной площадью S об = 5184 м 2 и высотой отбортовки Н об = 2,2 м. Степень заполнения резервуара a = 0,95.

Ввод трубопровода подачи сжиженного этилена в резервуар выполнен сверху, а вывод отводящего трубопровода снизу.

Диаметр отводящего трубопровода d т p = 0,25 м. Длина участка трубопровода от резервуара до автоматической задвижки, вероятность отказа которой превышает 10 -6 в год и не обеспечено резервирование ее элементов, L = 1 м. Максимальный расход сжиженного этилена в режиме выдачи G ж.э = 3,1944 кг/с. Плотность сжиженного этилена r ж.э при температуре эксплуатации Т эк = 169,5 К равна 568 кг/м 3 . Плотность газообразного этилена r г.э при Т эк равна 2,0204 кг/м 3 . Молярная масса сжиженного этилена М ж.э = 28 · 10 -3 кг/моль. Мольная теплота испарения сжиженного этилена L иcn при Т эк равна 1,344 · 10 4 Дж/моль. Температура бетона равна максимально возможной температуре воздуха в соответствующей климатической зоне T б = 309 К. Коэффициент теплопроводности бетона l б =1,5Вт/(м·К). Коэффициент температуропроводности бетона а = 8,4 · 10 -8 м 2 /с. Минимальная скорость воздушного потока u min = 0 м/с, а максимальная для данной климатической зоны u max = 5 м/с. Кинематическая вязкость воздуха n в при расчетной температуре воздуха для данной климатической зоны t р = 36 ° С равна 1,64 · 10 -5 м 2 /с. Коэффициент теплопроводности воздуха l в при t р равен 2,74 · 10 -2 Вт/(м · К).

Расчет

При разрушении изотермического резервуара объем сжиженного этилена составит

М 3 .

Свободный объем обвалования V об = 5184 · 2,2 = 11404,8 м 3 .

Ввиду того, что V ж.э < V об примем за площадь испарения S исп свободную площадь обвалования S об, равную 5184 м 2 .

Тогда массу испарившегося этилена m и.э с площади пролива при скорости воздушного потока u = 5 м/с рассчитывают по формуле (И.2)


Масса m и.э при u = 0 м/с составит 528039 кг.

ПРИЛОЖЕНИЕ К

МЕТОДЫ РАСЧЕТА ТЕМПЕРАТУРНОГО РЕЖИМА ПОЖАРА В ПОМЕЩЕНИЯХ ЗДАНИЙ РАЗЛИЧНОГО НАЗНАЧЕНИЯ

К.1 Условные обозначения

V- объем помещения, м 3 ;

S- площадь пола помещения, м 2 ;

А i - площадь i -го проема помещения, м 2 ;

h i - высота i -го проема помещения, м;

Суммарная площадь проемов помещения, м 2 ;

- приведенная высота проемов помещения,м;

П- проемность помещения, рассчитывается по формуле (К.1) или (К.2), м 0,5 ;

Р i - общее количество пожарной нагрузки i- го компонента твердых горючих и трудногорючих материалов, кг;

q - количество пожарной нагрузки, отнесенное к площади пола, кг/м;

q кр.к - удельное критическое количество пожарной нагрузки, кг/м 2 ;

q к - количество пожарной нагрузки, отнесенное к площади тепловоспринимающих поверхностей помещения, кг/м 2 ;

П ср - средняя скорость выгорания древесины, кг/(м 2 · мин);

П ср i - средняя скорость выгорания i -го компонента твердого горючего или трудногорючего материала, кг / м 2 · мин);

- низшая теплота сгорания древесины, МДж/кг;

- низшая теплота сгорания /-го компонента материала пожарной нагрузки, МДж/кг;

e ф - степень черноты факела;

Т 0 - температура окружающего воздуха, К;

Т w - температура поверхности конструкции, К;

t - текущее время развития пожара, мин;

t н.с.п - минимальная продолжительность начальной стадии пожара, мин;

Предельная продолжительность локального пожара при горении ЛВЖ и ГЖ, мин.

К.2 Определение интегральных теплотехнических параметров объемного свободно развивающегося пожара в помещении

К.2.1 Определение вида возможного пожара в помещении

Вычисляется объем помещения V

Рассчитывают проемность помещений П, м 0,5 , объемом V £ 10 м 3

, (K.1)

для помещений с V > 10м 3

. (К.2)

Из справочной литературы выбирают количество воздуха, необходимое для сгорания 1 кг материала i -й пожарной нагрузки V 0i , нм 3 /кг.

Рассчитывают количество воздуха, необходимое для сгорания 1 кг материала пожарной нагрузки V 0,667 .

Кафедра ЭТТ. Дисциплина «Основы технологии электронной компонентной базы»

Лабораторная работа № 1. Особенности нанесения пленок

При термовакуумном испарении

Цель работы : ознакомление с особенностями генерации и распространения потока молекул в вакууме и c распределением толщины пленки по поверхности подложки большой площади при термовакуумном испарении.

Основные понятия и соотношения

При термовакуумном испарении поток атомов или молекул вещества генерируется при нагревании материала в вакууме до температуры, близкой или превышающей его температуру плавления.

Испарениес поверхности жидкой фазы наиболее часто используется в технике. Для объяснения механизма процесса было предложено несколько моделей. В простейшей из них жидкая фаза (расплавленный материал) рассматривается как система осцилляторов, поверхностные молекулы которой связаны с определенной энергией испарения. Предполагается, что переход в газообразную фазу происходит тогда, когда энергия колебаний молекул на поверхности равна или превосходит энергию испарения. Предполагается также, что все молекулы поверхности имеют одну и ту же энергию связи и равную вероятность испарения. Вследствие интерференции колебаний осцилляторов становится возможным испарение отдельных молекул.

В усовершенствованной статистической модели состояние молекул на поверхности описывается максвелловским распределением по энергии и пространственным распределением, связывающим смещение молекул от равновесного положения с их потенциальной энергией. Испарение молекулы происходит тогда, когда она смещается на такое расстояние, что ее потенциальная энергия становится равной энергии испарения.

Экспериментальные исследования показали, что статистическая модель достаточно хорошо применима к жидкостям, испарение которых происходит за счет обмена одиночных атомов с одноатомным паром (ртуть, калий, бериллий и ряд других металлов). Аналогично ведут себя и некоторые органические жидкости, молекулы которых имеют сферическую симметрию и малые энтропии испарения (например, четыреххлористый углерод – CCl 4).

В веществах, молекулы которых имеют различные степени свободы в конденсированном и газообразном состояниях, при испарении должно происходить изменение не только поступательного движения, но и внутренней энергии молекул. В тоже время статистически маловероятно, что молекула на поверхности получает в один и тот же момент как кинетическую, так и потенциальную энергии, необходимые для испарения при термодинамическом равновесии. Более вероятно, что молекула получает вначале необходимую кинетическую энергию, а затем должна до момента испарения получить квант внутренней энергии.

Полагают, что среди различных видов внутренней энергии молекул, наибольшее влияние на вероятность испарения оказывает энергия вращения. Это подтверждается тем, что время релаксации, необходимое для получения вращательной степени свободы молекулой с добавленной кинетической энергией, больше, чем для других процессов. Таким образом, ограничение испарения происходит вследствие потери одной степени свободы, которая уменьшает число возможных состояний для молекул в жидкой фазе. Такая форма ограничения фазового перехода называется ограничением по энтропии.

Испарение с ограничением по энтропии подтверждается для жидкостей с малыми полярными молекулами, которые испаряются с невозмущенных поверхностей (бензин, хлороформ, этанол, метанол и др.). Некоторые органические жидкости имеют вращательную степень свободы и в активированном состоянии.

При испарении металлов основным видом частиц в газовой фазе являются одиночные атомы металла и лишь небольшую часть (меньше 0,1%) составляют двухатомные молекулы. Для некоторых элементов (C, S, Se, Te , P, As, Sb) пары состоят из многоатомных молекул.

Испарение с поверхности твердой фазы , называемое сублимацией, объясняется наличием на поверхности материала моноатомных ступенек и состояний с различным числом атомов в первом и последующем слое. Так как силы связи, действующие на данный атом со стороны соседних атомов, являются аддитивными (складываются), то значения энергии испарения для атомов в различных состояниях будут различными. В первую очередь испаряются атомы с наименьшим числом связей (соседей), что создает благоприятные условия для испарения других атомов.

При испарении материалов сложного состава необходимо учитывать фракционирование вещества и возможность диссоциации. Весьма важно учитывать особенности взаимодействия испаряемого материала с материалом испарителя.

Пролет частиц вещества от испарителя до поверхности подложки сопровождается их столкновениями между собой и с молекулами остаточных газов. Для уменьшения такого взаимодействия испарение производят при давлении насыщенных паров вещества не более 10 -2 Торр, а остаточных газов – не более 10 -4 – 10 -5 Торр.

Конденсация атомов (молекул) вещества происходит после пролета материала до поверхности подложки. Она зависит от соотношения свободных энергий потока частиц и поверхности. Послойный режим роста пленок (режим Франка – Ван-дер-Мерве) реализуется, если энергия связи атомов осаждаемого вещества с подложкой больше энергии связи атомов друг с другом.

Островковый режим Фольмера-Вебера реализуется тогда, когда атомы вещества связаны друг с другом сильнее, чем с подложкой. Маленькие зародыши растут, превращаясь в большие островки конденсированной фазы. После заполнения промежутков (каналов) между островками, они сливаются и образуют сплошную пленку.

При промежуточном режиме Странского-Крастанова вначале происходит послойный рост одного-двух монослоев. Затем начинается рост островков на их поверхности. При достаточном размере островков они сливаются с образованием сплошной пленки. Одной из причин такого поведения является изменение параметра решетки при заполнении очередного монослоя.

Расчет скорости испарения

Массаиспаряемого вещества , попадающего на элементарную сферическую площадку с испарителя малой площади , определяется следующим соотношением:

, (1)

где – время испарения; – угол между нормалью к поверхности испарителя и направлением к выбранной точке подложки; – радиус сферы, на которой расположена элементарная сферическая площадка с измеряемым количеством вещества .

Скорость испарения вещества в вакууме рассчитывается по формуле:

, (2)

где – скорость испарения, г·см –2 ·с –1 ; – атомный (молекулярный) вес вещества, – давление его насыщенного пара, Торр; – температура, К.

Давление насыщенных паров вещества в объеме испарения определяется соотношением:

, (3)

в котором величины и характеризуют свойства испаряемого материала. Для всех материалов таблицы Менделеева = 8,8 (для Si–10,2); = / 4,576, К; – теплота парообразования, кал/моль. Значения , плотности и температуры плавления ряда металлов приведены в таблице 1.

Для плоской подложки, поверхность которой расположена произвольно относительно поверхности плоского испарителя конечных размеров малой площади, уравнение (1) трансформируется к виду:

, (4)

где - угол между нормалью к поверхности подложки и направлением испарения.

Таблица 1

При практическом применении метода нанесения пленок важно не количество испаренного материала, а толщина получаемых пленок и ее распределение по поверхности подложки.

Расчет толщины пленок

Указанные закономерности распределения испаренного вещества приводят к тому, что распределение толщины пленки по поверхности подложки может иметь сложный характер. Поскольку для элементарной площадки подложки количество материала (где – плотность испаряемого материала), толщина пленки для произвольно расположенной подложки определяется соотношением:

(5)

В этом соотношении положение точки подложки, в которой рассчитывается толщина пленки, определяется тремя величинами .

Для плоского поверхностного испарителя малой площади и плоской подложки, расположенной на расстоянии параллельно поверхности испарителя (рис. 1), толщина пленки определяется соотношением:

, (6)

где ; – координата вдоль поверхности подложки (расстояние от

Рисунок 1. Расположение подложки относительно испарителя

центра подложки в точке А до точки Б , в которой определяется толщина пленки); – нормированное значение координаты; – полное количество испаренного вещества.

Наибольшая толщина пленки получается в точке А подложки, а относительное изменение толщины пленки для разных точек подложки в этом случае имеет вид:

, . (7)

Точечный испаритель представляет собой сферу, размеры которой пренебрежимо малы по сравнению с расстоянием до поверхности подложки и её размерами. С такого испарителя в элементарный телесный угол испаряется количество вещества . Если нанесение плёнки производится на произвольно расположенную плоскую подложку, то, как следует из рисунка, основные соотношения для точечного испарителя принимают следующий вид:

; . (8)

В таблице 2 приведена зависимость относительной толщины от х/h для точечного и поверхностного испарителя.

Таблица – Зависимость равномерности толщины от х/h

х/h 0,25 0,5 0,75
(d/d0)п 0,83 0,64 0,41 0,25 0,04
(d/d0)т 0,88 0,71 0,51 0,35 0,09

Для стандартных размеров подложки 60х48 мм при расстоянии испаритель – подложка в 200 мм неравномерность толщины плёнки составляет около 10 %. А в современных аналого-цифровых преобразователях требования к точности резисторов (разброс по сопротивлениям) составляет не более 0,05 %. Для обеспечения нужной равномерности при нанесении плёнок на подложки как больших, так и малых размеров применяют различные способы:

Использование испарителей большой площади,

Использование кольцевых испарителей,

Применение большого числа одновременно работающих испарителей,

Перемещение подложек по сложной (планетарной) траектории,

Смещение испарителя на строго определённое расстояние относительно центра вращающейся подложки,

Применение вращающихся диафрагм специальной формы при неподвижной подложке.

При применении плоского дискового испарителя конечных размеров радиуса R соответствующие выражения для толщин принимают окончательный вид:

, . (9)

Для кольцевого испарителя радиуса R, центр которого совпадает с центром плоской подложки расположенной параллельно плоскости испарителя, выражение для толщины пленки принимает следующий вид:

. . (10)

Наиболее часто на практике находит применение вариант со смещением испарителя относительно центра вращающейся подложки. Для этого варианта с испарителем малой площади соответствующие выражения принимают вид, аналогичный формулам для кольцевого испарителя. Отличие заключается в том, что вместо радиуса тонкого кольца R в формулу входит расстояние l от испарителя до оси вращения подложки.

. . (11)

Использование вращающихся диафрагм (заслонок) специальной формы основано на дополнительном регулировании количества материала, поступающего от испарителя на тот или иной участок подложки. Очень важно, чтобы центр вращения диафрагмы совпадал с центром испарителя и подложки. Чтобы снизить нежелательное уменьшение толщины, поток испаряемого вещества в наиболее удаленных точках подложки не прекрывается. По мере приближения к геометрическому центру подложки край заслонки должен представлять собой дугу возрастающей длины, так, чтобы длительность прерывания потока на любом данном расстоянии обеспечивала уменьшение скорости осаждения в данном месте до величины скорости в наиболее удаленных точках. Контуры заслонок для однородного покрытия представляют собой спирали, точные линии которых для различных условий получают расчетом на компьютере. Применение вращающихся диафрагм позволяет получить равномерность толщины в пределах долей процента. Недостатком метода является избыточный расход материала, так как перекрывается и оседает на поверхности заслонки основная часть испаряемого материала.

Задание к работе

При домашней подготовке необходимо для заданного материала и толщины пленки испаренного материала определить температуру поверхностного испарителя малой площади, при которой наибольшая толщина пленки d 0 будет равна заданной. Для расчета используются зависимости (2), (3), (7), данные таблицы и вариантов заданий.

При работе в лаборатории необходимо в компьютерном эксперименте получить следующие зависимости:

Распределение абсолютной толщины d(x) для заданной d 0 для поверхностного малой площади, дискового, кольцевого и смещенного относительно центра вращающейся подложки испарителей. (Для трех последних типов испарителя предварительно необходимо подобрать температуру, обеспечивающую одну и ту же толщину d 0 при х=0);

Относительное отклонение толщины пленки заданного материала в зависимости от расстояния x по поверхности подложки при заданной d 0 для исследуемых испарителей;

Для заданного d 0 и размера подложки 100х150 мм 2 выбрать тип испарителя, все его характеристики (кроме F) и расстояние h, обеспечивающие равномерность толщины пленки не хуже 2 %.

Примечание : необходимые для расчета дополнительные сведения приведены в перечне «Варианты задания».

Требования к отчету

Отчет составляется индивидуально на листах формата А4. При домашней подготовке необходимо изучить содержание работы, провести расчет температуры для своего варианта задания, а основные аналитические соотношения и последовательность расчета внести в заготовленный отчет. Подготовленный для защиты отчет должен содержать:

Теоретическую часть и результаты расчета (домашнюю подготовку),

Эскизы конфигурации систем испарения,

Расчетные формулы,

Последовательность расчетов и распределение абсолютной и относительной толщины по диагоналям подложки,

Анализ результатов,

Ответы на контрольные вопросы.

6. Контрольные вопросы

Чем определяется максимально возможная толщина пленки при термовакуумном испарении?

Какие соотношения связывают толщину пленки с температурой испарителя?

Как испаряют порошкообразные материалы?

Какие типы испарителей применяют для испарения порошковых материалов?

Что такое сублимация?

Какие требования предъявляются к материалам испарителей?

При каких условиях происходит послойный рост пленки при испарении?

Как происходит испарение с поверхности твердой фазы?